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Calculation of Propagation Constants
and Cutoff Frequencies of Radially

Inhomogeneous Optical Fibers

CHING-CHUAN SU AND CHUN HSIIUNG CHEN

.-tbstract — Based on the finite-difference technique, an efficient numeri-

cal method that can treat both the propagation constants and cutoff
frequencies of optical fibers with arbitrary permittivity profiles is developed

in the rigorous vector form. Such a propagation problem is formulated in

transverse fields so that the proposed method does not suffer from spurious

modes. The associated boundary conditions including those at cntoff are

derived in a novel way. ‘f’hereafter, numerical results of the cutoff frequency

and propagation constant of a fiber with the parabolic profile are presented.

I. INTRODUCTION

T O SOLVE THE propagation constants of guided

modes of optical fibers with arbitrary permittivity

profiles in the rigorous vector form, several numerical

methods have been developed. They include the stair-case

approximation [1], [2], direct numerical integration of four

coupled first-order differential equations [3]–[6], and the

finite-element method [7]. In the stair-case approximation,

the radially inhomogeneous fiber is divided into and is thus

approximated by a series of homogeneous regions. In each

such region, linear combinations of analytic field distribu-

tions (the Bessel or modified Bessel functions) are related

to those in the neighboring regions. In the second method,

the four tangential components of the electromagnetic fields

are related by four coupled first-order differential equa-

tions. The propagation problem is solved by matching at

the boundary two independent sets of solutions, which in

turn are obtained numerically by direct integrations of the

four first-order differential equations. The finite-element

method in [7] is formulated in the axial fields, which may

suffer from spurious modes when the node points are not

chosen carefully [8].

Now let us turn to the methods of determining cutoff

frequency. As early as 1973, Dil and Blok [3] proposed

associated equations, from the four coupled first-order

differential equations, for treating the cutoff frequencies of

guided modes, but no serious data was presented at that

time. Perhaps, the first detailed evaluation of ‘cutoff fre-

quencies in the vector form is due to Bianciardi and Rizzoli

[1], who have developed a method based on the stair-case

approximation for dealing with the cutoff frequency as well

as propagation constant.
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In this investigation, from the rigorous vectorial wave

equations, we present an efficient finite-difference method

in the H@ – H, formulation, which does not suffer from

spurious modes and can handle both the propagation

constants and cutoff frequencies of optical fibers with

arbitrary permittivity profiles. In Section II, two coupled

second-order differential equations in H* and H, are

formulated. Thereafter, the associated boundary conditions

are derived, including those at cutoff. The calculated re-

sults for the parabolic profile are presented in Section IV.

II. FORMULATION

Consider an isotropic, rotationally symmetric optical

fiber of which the relative permittivity profile, in general,

can be expressed as

6( R)=61+(62–6JP(R), R<l

=el, R>l. (1)

Here, R = r/a, r is the radial variable in cylindrical

coordinates, a is the core radius of the fiber, and P(R) is

an arbitrary function whose value never exceeds unity such

that the relative permittivity never exceeds c~ (~ ~ > (l).

Along such a fiber, a time-harmonic electromagnetic wave

of anular frequency Q propagates with fixed variations

with respect to the axial (z) and the azimuthal (O) direc-

tions as exp ( – jm+ – j~z), where the azimuthal mode

number m is an integer. From Maxwell’s equations, one “

obtaines

VC(R)
k;f(R)fi+v2H+— Xvx%=o. (2)

c(R)

From such a relation, the propagation problem of the

radially inhomogeneous fiber can be described in terms of

the transverse magnetic fields, M@ and H,, as in the

following two coupled second-order differential equations:

H(’(R)+;H:(R)

[

1 mz
+ a2(k;c(R)–~2)–z–~ 1H+(R)

E’(R)
–#Hr(R)– —

c(R)

[ 1-%@)+&@)+;K(R) =0 (3a)
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and

H:(R)+ &(R)

[ 1++;C(R)-B2)-4-$ H,(R)

– Z&@)=0 (3b)

where k. is the free-space propagation constant and the

prime denotes differentiation with respect to R. In writing

(3) and throughout this investigation, a prue imaginary

number j before H, is omitted for compactness in nota-

tion. Once H+ and H, are solved, the axial fields, E= and

Hz, can be obtained from the relations of v. ~ = O and

jot ~c(R)~ = v X ~, respectively. Explicitly

–tiz(R) =H;(R)+ ~~,(R)+ ~H@(R) (4a)

and

[ 12,(R)=H;(R)+&@)+;M(R)/f(R)(4b)

where ~z(R) = jticOuEz(R) and fiz(R) = /?aHZ(R).

To solve (3), we need two boundary conditions at R = O

and the other two at the core-cladding interface, From (4),

it is noted that, for EZ and H, to remain finite at R = O, it

requires that

H+(0) = O

}

form#l
H,(o) = o

(5a)

(5b)

and that

Ho(o) = – H,(o) form=l. (6)

Using (6), one can find that, for the left-hand sides of (3a)

and (3b) to still remain finite at R = O, it requires that

H;(O) = O

)

form=l.
H;(O) = O

(5C)

(5d)

The other two boundary conditions at the core-cladding

interface (R = 1)’ are derived as follows. As shown in [9],

H+ and H, can be expressed in terms of E= and HZ

the cladding region (R > 1), the expressions read as

[1H+(R)

H,(R)

-[
1 ~@~(wR)/K~(wR) m/R—

For
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(4). Thus, (5) and (7) constitute the boundary conditions of

the propagation problem in the H+ – H, formulation.

It is noted that (7) requires special consideration at

cutoff (w + O) since the common denominator w 2 vanishes

in such a situation. Following a similar procedure as in

[10], such a singularity can be removed by noting the

behavior of the modified Bessel functions with vanishing

arguments, as follows.

As w approaches zero, K{\KOw becomes infinite. Thus,

for H+(l) and H,(l) in (7) to remain finite, it requires that

:=(1) = o

1
for m = O.

E,(l) = o

(8a)

(8b)

For m >0, wK~ /K~ approaches a quantity of [ – m /R –

W2Q~Rl, where

Q,= -ln(l.781wR/2)

and

Q~ =1/2(m -1) form>l.

Again, for H+(l) and H.(l) in (7) to remain finite, it

requires that, to the order of w 2

R,(l) = C,fiz(l) + w*f (9)

where f is an unknown quantity. From such a relation, one

can substitute fiZ for fiz in (7). Thereby, one obtains

and then

H+(l) – H,(l)= –2qQn1fiz(l). (ha)

Letting w = O in (9), one obtains the other boundary

condition at cutoff as

l?,(l) = fliz(l). (llb)

It is noted that the newly introduced unknown f has been

cancelled in (ha). Since QI becomes infinite, the boundary

conditions at cutoff, (ha) and (11 b), for the case of m = 1

reduce to those for m = O, (8a) and (8b). When ~,(1) and

Hz(l) in the boundary conditions (7), (8), or (11) are

expressed in terms of H+ and H, (from (4)), one arrives at

the desired boundary conditions in the present H@ – H,

W’1 - clm/R –wK;(wR)/Km(wR) ]

“[ 1~Z(R)

fiz(R)
(7)

where w = a(P2 – k&1)1”2, Km(wR) is the Wth-order

modified Bessel function of the second kind, and K~( wR)

= dK~( wR)/d( wR). The axial component fields in (7), in

turn, can be expressed in terms of Ho and H, as stated by

formulation.

It is of interest to consider the .ypecial case of step profile

(P(R) = 1). For such a case, E,(R) and HZ(R) satisfy the

same differential equation in the homogeneous core region

and the same boundary condition at R-= O. Consequently,

1

they are related linearly as fiz(R) = cEZ(R)aJ~( uR) (for

O < R < 1), where c is a constant, J,,, is the rnth-order

Bessel function of the first kind, and ;= a(k&2 – f12)1/2.

For (llb) to be satisfied at cutoff, one can conclude that

C= cl, otherwise ~Z(l) = fiZ(l) = O. In the former case,

fiZ(R) = cl~z(-R), when ~H@(l) and H,(l) in (ha) are
expressed in E,(l) and Hz(l) using a similar form of (7)

for the core region, (ha) reduces to the cutoff equation

derived by Schelkunoff [11] for the HE modes with m >2.

The latter case, or stated by (8), is just the cutoff equation

of the EH modes obtained by Aebel [12].
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It is of convenience to introduce normalized frequency V

and normalized propagation constant B, where

V= kOu(fz – C1)l’2

and

B = [(~/kO)2– q]/(c2- (I).

If such normalized quantities are substituted in (3) and in

the associated boundary conditions, it can be shown that

(except the TE modes for which m = O and H+= O) the

relation between B and V of guided modes are determined

by the permittivity ratio 6,(= cJcl), not necessarily by

the respective values of c~ and cl. As to the TE modes, the

situation relaxes further; that is, the relation between B

and V is determined by the profile P(R) only and is

independent of c~ and (I.

III. P-JUMERICAL PROCEDURE AND EFFICIENCY

To solve the two coupled second-order differential equa-

tions (3) together with the associated boundary conditions,

we discretize equally the interval (0 < R <1) into N node

points R, (i=l,2, ” . “, N) and calculate the corresponding

fields at such points. Applying the central finite-difference

formulas to (3) and to the associated boundary conditions

(except for (5c) and (5d), where a forward finite difference

is used), and employing a similar (generalized in a bivari-

able form) approach as in [13], we arrive at 2N simulta-

neous linear equations.

AT=O (12)

where A is a 2 N x 2 N band matrix with a bandwidth of 5

and

*= [HO, ““ “H@(R~)H,(R~)]~.

To obtain the cutoff frequency of each guided mode, we

set ~ 2 = k~el (B = O) and search the value of normalized

frequency V such that the determinant of A becomes

vanishing. The dispersion curves of guided modes are

constructed by fixing V (or B) and then searching the

value of B (or V) which renders det A vanishing.

In the cases of m #O, the computation effort for each

trial set of B and V of the proposed method lies mainly in

the Gauss elimination of the band matrix A, which takes

12N multiplications. The required core memory is about

20iV locations of storage. In the case of m = O, H+(R) and

H,(R) are uncoupled in the formulation and the computa-

tion effort can be reduced accordingly.

IV. RESULTS

The proposed method can treat any kind of permittivity

profile. In this investigation, we consider the parabolic

profile (I’(R) = 1 – R2), for which the present results can

be compared with other works. The number of node points

N chosen in this section is 100, except when stated other-

wise. The notation TE (TM) corresponds to the mode of

m = O and Ho(H,) = O. In the cases of m >0, the modes

are hybrid. The notation HE (EH) corresponds to the

TABLE I
NORMALIZED CUTOFF FREQUENCIES OF OPTICAL FIBERS

WITH THE PARABOLIC PROFILE

Mod e

H=ll

‘%1

‘%1

‘E21

‘E12

‘Hll

“E31

‘“02

TE02

‘E22

EH21

‘E41

HE13

‘H12

‘E32

‘H31

“E51

E, = 1. U4U4

1. 11. 111.

L1. oo 0.00 U. (JO

3.501 3.502 3.502

3.517 3.518 3.518

3.532 3.532 3.532

5.061 5.070 5.066

5.733 5.732 5.733

5.760 5.760 5.761

7.438 7.435 7.440

7.450 7.446 7.451

7.455 7.451 7.456

7.835 7.834 7.835

7.865 7.864 7.866

9.144 9.156 9.156

9.636 9.619 9.637

9.652 9.644 9.653

9.890 9.8k19 9.891

Y.923 9.920 9.923

IV.

0.00

3.502

3.518

3.533

5.065

5.733

5.761

7.441

7.451

7.457

7.836

7.866

9.156

9.638

9.654

9.091

9.923

E, = 2.25

v. VI VII.

0.00 0.00 0.00

3.230 3.230 3.230

3.518 3.518 3.518

3.870 3.879 3.882

5.005 5.001 5.001

5.570 5.572 5.572

6.149 6.157 6.160

7.231 7.238 7.238

7.446 7.451 7.451

7.542 7.552 7.555

7.649 7.652 7.653

8.273 8.281 8.283

9.093 9.094 9.094

9.500 9.518 9.518

9.855 9.871 9,875

9.641 9.644 9.645

10.339 10.346 10.348

The data in column I are taken from [1]; those in columns II and V (III
and VI) are made here with N = 30 (100).

4

HEz1

~ 35

3 I J
I 15 20 25

Fig. 1. Cutoff frequencies of three lower modes as functions of c,

modezfor which the maxima of the corresponding ~z(R)

and H,(R) are of the same (opposite) sign.

The calculated cutoff frequencies of the first 17 modes of

the parabolic profile are presented in Table I. The data

presented in volumns IV and VII of Table I are believed to

be exact, since no deviations in the third decimal digit were

observed when larger values of N were used. All the data

in column IV (c, = 1.0404) are achieved with N = 300;

most of the data in column VII (c, = 2.25) are achieved

with N =1000. For comparison, we also list the results

from Bianciardi and Rizzoli [1] in column I. It is seen that

their results show some discrepancies from those in column

IV, especially for the HE13 mode.
The variations of the cutoff frequencies of the TEOI,

TMOI, and HE21 modes as the permittivity ratio increases

are shown in Fig. 1. It is seen that as c, approaches unity,

the above three modes become degenerate. As c, increases,

the cutoff frequency of the HE21 modes increases, while
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Fig. 2. Dispersion curves of the first 17 modes of the parabolic profile Fig. 4. Dispersion curve of the fundamental (HE1l ) mode with c, as a

with c, =1.0404. parameter.
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Fig. 3. Dispersion curves of the first 12 modes of the parabolic profile

with c, = 2.25.

that of the TMOI mode decreases. As noted in Section H, it

is seen that the cutoff frequency of the TEO1 mode is

independent of the perrnittivity ratio. Since the vectorial

solution becomes the scalar one when c, approaches unity,

the vectorial and the scalar results of the TE modes become

identical, regardless of the permittivit y ratio. Exact solu-

tions of cutoff frequencies of the parabolic profile in the

scalar form can be obtained analytically via the Kummer

functions and have been calculated by Lukowski and

Kapron [14]. From them, the exact values of normalized

cutoff frequencies of the TEO1 and the TE02 modes Me

given as 3.518 and 7.451, respectively, which agree with our

presented data.

Dispersion curves of the first 17 guided modes of the

parabolic profile with c,= 1.0404 ‘are shown in Fig. 2.

From Fig. 2, it is seen that due to 6’(R) being negligibly

small, the HEM + ~,, mode and the EH~. 1,I mode (or the

TMO, and TEO, modes, when m =1) become nearly degen-

erate. Similar degeneracy also exists in the dispersion curves

of the HEM, mode and the EH~, {. 1 mode in the region of
far above cutoff. (Note that the latter near-degeneracy may

not hold in other profiles, as, shown in Fig. 7.) When the

permittivity ratio is increased, two such kinds of near-

degeneracy are removed somewhat, as indicated in Fig. 3.

To demonstrate the effect of the permittivity ratio on the

propagation characteristics, the shifting of the dispersion

curve of the fundamental (HEIJ mode as c, is varied is
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Fig. 5. Field distributions of the fundamental (HE1l) mode (in relative

magnitude) with the normalized propagation constant and the permittiv-
ity ratio as parameters. The discrepancies between the curves of H+ and

H, are too small to be shown for the cases of c,= 1.0404.

shown in Fig. 4. It is seen that the curve shifts downwards

when the permittivit y ratio is increased.

The corresponding eigenfunctions (field distributions of

guided modes) are illustrated in Figs. 5 and 6. It is seen

that for a higher B, the fields are more concentrated in the

core region and that the discrepancy between If@(R) and

Hr( R ) becomes stronger as c, is increased. It is noted that

the HEII modes have the largest fields at the core center,

while the EH II modes do not. From such field distribu-

tions, the power distributions [2], [5] and group velocities

[15] can be deduced.

In an actual fabrication, there may be a central dip in

the permittivity profile. To investigate the effect of the dip,

we assume the Gaussian dip, namely, P(R) = 1 – R* –

G~ exp [ – (R /GW)2]. The corresponding dispersion curves

are shown in Fig. 7, from which it is seen that the curves

are lower with a larger’ Gd. It is noted that the dip has

weaker effects on the EH1l modes and those modes with

m #1. This fact is accounted for by noting that the field
distributions of such modes are smaller at the core center

(from Fig. 6 or (5)) where the dip is located. Since the
effects of a central dip are different for the HE12 and the

EHII modes, it is expected that the near-degeneracy be-

tween such two modes (in the case of Gd = O) is removed at

the presence of a dip, as shown in Fig. 7 and, similarly, in

[6].
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Fig. 6, Field distributions of the EHII mode (in relative magnitude)
with the normalized propagation constant as a parameter. (a) c, = 1.0404.
(b) (,= 2.25. The discrepancy between the curves of H+ and H, is too
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Fig. 7. Dispersion curves of some lower modes of the parabolic profile

(c, = 1.0404) with the Gaussian dip (GW = 0,2).

V. CONCLUSION

Based on the finite-difference technique, an efficient and

rigorous method has been developed which can treat prop-

agation constants as well as cutoff frequencies of optical

fibers with arbitrary permittivity profiles. The propagation

problem is formulated in transverse fields such that the

proposed method does not suffer from spurious modes.

Associated boundary conditions are derived, including

those at cutoff. Calculated results of the cutoff frequencies

and the dispersion curves of optical fibers with the para-

bolic profile are presented. The effects of the perrnittivity

ratio and the Gaussian dip are also discussed.
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