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Calculation of Propagation Constants
and Cutoff Frequencies of Radially
Inhomogeneous Optical Fibers

CHING-CHUAN SU anp CHUN HSIUNG CHEN

Abstract —Based on the finite-difference technique, an efficient numeri-
cal method that can treat both the propagation constants and cutoff
frequencies of optical fibers with arbitrary permittivity profiles is developed
in the rigorous vector form. Such a propagation problem is formulated in
transverse fields so that the proposed method does not suffer from spurious
modes. The associated boundary conditions including those at cutoff are
derived in a novel way. Thereafter, numerical results of the cutoff frequency
and propagation constant of a fiber with the parabolic profile are presented.

I. INTRODUCTION

O SOLVE THE propagation constants of guided

modes of optical fibers with arbitrary permittivity
profiles in the rigorous vector form, several numerical
methods have been developed. They include the stair-case
approximation [1], [2], direct numerical integration of four
coupled first-order differential equations [3]-[6], and the
finite-element method [7]. In the stair-case approximation,
the radially inhomogeneous fiber is divided into and is thus
approximated by a series of homogeneous regions. In each
such region, linear combinations of analytic field distribu-
tions (the Bessel or modified Bessel functions) are related
to those in the neighboring regions. In the second method,
the four tangential components of the electromagnetic fields
are related by four coupled first-order differential equa-
tions. The propagation problem is solved by matching at
the boundary two independent sets of solutions, which in
turn are obtained numerically by direct integrations of the
four first-order differential equations. The finite-element
method in [7] is formulated in the axial fields, which may
suffer from spurious modes when the node points are not
chosen carefully [8].

Now let us turn to the methods of determining cutoff
frequency. As early as 1973, Dil and Blok [3] proposed
associated equations, from the four coupled first-order
differential equations, for treating the cutoff frequencies of
guided modes, but no serious data was presented at that
time. Perhaps, the first detailed evaluation of ‘cutoff fre-
quencies in the vector form is due to Bianciardi and Rizzoli
[1], who have developed a method based on the stair-case
approximation for dealing with the cutoff frequency as well
as propagation constant.
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In this investigation, from the rigorous vectorial wave
equations, we present an efficient finite-difference method
in the H,— H, formulation, which does not suffer from
spurious modes and can handle both the propagation
constants and cutoff frequencies of optical fibers with
arbitrary permittivity profiles. In Section II, two coupled
second-order differential equations in H, and H, are
formulated. Thereafter, the associated boundary conditions
are derived, including those at cutoff. The calculated re-
sults for the parabolic profile are presented in Section IV.

II. FORMULATION

Consider an isotropic, rotationally symmetric optical
fiber of which the relative permittivity profile, in general,
can be expressed as

€(R)=¢,+(e;,—¢) P(R),

=€,

Rkl
R>1.

1)
Here, R=r/a, r is the radial variable in cylindrical
coordinates, a is the core radius of the fiber, and P(R) is
an arbitrary function whose value never exceeds unity such
that the relative permittivity never exceeds €, (€,>¢€).
Along such a fiber, a time-harmonic electromagnetic wave
of anular frequency w propagates with fixed variations
with respect to the axial (z) and the azimuthal (¢) direc-
tions as exp(— jm¢ — jBz), where the azimuthal mode
number m is an integer. From Maxwell’s equations, one
obtaines

— —  Ve(R _
k%(R)H+v*H+ ()xva=0.

&) (2)

From such a relation, the propagation problem of the
radially inhomogeneous fiber can be described in terms of
the transverse magnetic fields, H, and H,, as in the
following two coupled second-order differential equations:

1
HY(R)+ o H/(R)
1 m?
+ {ﬁ(k&(k)—ﬁz)— e F}Hq)(R)
¢'(R)
e(R)

~[H¢§(R)+ %H¢(R)+ %H,(R)} ~0

2mH R
R2 r( )_

(3a)
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and

1
H/'(R)+ = H/(R)

2

1
@(K3e(R) = B?) = o5 = =7 |H(R)

2m

- H(R) =0 (3b)
where k is the free-space propagation constant and the
prime denotes differentiation with respect to R. In writing
(3) and throughout this investigation, a prue imaginary
number j before H, is omitted for compactness in nota-
tion. Once H, and H are solved, the axial fields, E, and
H,, can be obtamed from the relations of v-H =0 and
Jweoe(R)E Vv X H, respectively. Explicitly

H,(R)

- AL(R) = HAR)+ L H(R)+ (4a)

and

- 1 m
B(R) = | Hg(R)+ (R + 2 (R e(R) (a0
where E_(R) = jwe,aE,(R) and H,(R)=BaH,(R).

To solve (3), we need two boundary conditions at R =0
"and the other two at the core-cladding interface. From (4),
it is noted that, for E, and H, to remain finite at R =0, it
requires that

H,(0)=0 (5a)
H.(0) = O} for m#1 (5b)

and that
H,(0)=—H,(0) form=1. (6)

Using (6), one can find that, for the left-hand sides of (3a)
and (3b) to still remain finite at R = 0, it requires that

H;(0)=0
+(0) for m=1. (5¢)
H!(0)=0 (5d)
The other two boundary conditions at the core-cladding
interface (R =1) are derived as follows. As shown in {9],

H, and H, can be expressed in terms of E, and H,. For
the cladding region (R > 1), the expressions read as

[H¢(R)

Hr(R)
1 ewK . (wR)/K, (wR) m/R
S ow? -em/R  —wK(wR)/K, (wR)
E,(R) |
A.(R) O

where w=a(B8%— k)% K,(wR) is the mth-order
modified Bessel function of the second kind, and K (wR)
= dK, (wR)/d(wR). The axial component fields in (7), in
turn, can be expressed in terms of H, and H, as stated by
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(4). Thus, (5) and (7) constitute the boundary conditions of
the propagation problem in the H, — H, formulation.

It is noted that (7) requires special consideration at
cutoff (w — 0) since the common denominator w? vanishes
in such a situation. Following a similar procedure as in
[10], such a singularity can be removed by noting the
behavior of the modified Bessel functions with vanishing
arguments, as follows.

As w approaches zero, K| /K w becomes infinite. Thus,
for H,(1) and H,(1) in (7) to remain finite, it requires that

E.(1)=0 _ (8a)
flz(l) _ 0} form=0. (8b)

For m >0, wK, /K, approaches a quantity of [—m /R —
w20, R], where
Q,=—1n(1.781wR /2)
and
Q,=1/2(m-1) form>1.
Again, for H,(1) and H.(1) 1n (7) to remain finite, it
requires that, to the order of w?

A,(1) = E,(1)+ wf ©)

where f is an unknown quantity. From such a relation, one
can substitute E, for H, in (7). Thereby, one obtains

H,1)] [-a0. m][EQ
Hr(l) -

lem m f
H,(1)- H,(1) = -260,,E,(1).

Letting w=0 in (9), one obtains the other boundary
condition at cutoff as

A1) =¢,E.(1). (11b)
1t is noted that the newly introduced unknown f has been
cancelled in (11a). Since @, becomes infinite, the boundary

conditions at cutoff, (11a) and (11b), for the case of m =1
reduce to those for m =0, (8a) and (8b). When E_(1) and

(10)

and then
(11a)

‘ﬁz(l) in the boundary conditions (7), (8), or (11) are

expressed in terms of H, and H, (from (4)), one arrives at
the desired boundary conditions in the present H,— H,
formulation.

1t is of interest to consider the special case of step profile
(P(R)=1). For such a case, E,(R) and H,(R) satisfy the
same differential equation in the homogeneous core region
and the same boundary condition at R = 0. Consequently,
they are related linearly as H,(R) = cE,(R)aJ, (uR) (for
0 < R<1), where ¢ is a constant, J,, is the mth-order
Bessel function of the first kind, and u = a(k3e, — )"/
For (11b) to be satisfied at cutoff, one can conclude that
c=¢,, otherwise E, (1)= H.(1)=0. In the former case,
H, (R)=¢ E J(R), when H (1) and H/(1) in (1la) are
expressed in E ,(1) and H,(1) using a similar form of (7)
for the core region, (11a) reduces to the cutoff equation
derived by Schelkunoff {11] for the HE modes with m > 2.
The latter case, or stated by (8), is just the cutoff equation
of the EH modes obtained by Aebel [12].
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It is of convenience to introduce normalized frequency V'
and normalized propagation constant B, where

V=koa(e,— )"

and

B= [(,B/ko)z_ E1]/(52_ €)-

If such normalized quantities are substituted in (3) and in
the associated boundary conditions, it can be shown that
(except the TE modes for which m=0 and H,=0) the
relation between B and V of guided modes are determined
by the permittivity ratio €,(=¢€,/¢;), not necessarily by
the respective values of €, and ;. As to the TE modes, the
situation relaxes further; that is, the relation between B
and V is determined by the profile P(R) only and is
independent of ¢, and ¢;.

I1I.

To solve the two coupled second-order differential equa-
tions (3) together with the associated boundary conditions,
we discretize equally the interval (0 < R <1) into N node
points R, (i=1,2,---, N) and calculate the corresponding
fields at such points. Applying the central finite-difference
formulas to (3) and to the associated boundary conditions
(except for (5¢) and (5d), where a forward finite difference
is used), and employing a similar (generalized in a bivari-
able form) approach as in [13], we arrive at 2N simulta-
neous linear equations.

NUMERICAL PROCEDURE AND EFFICIENCY

AY =0 (12)

where 4 is a 2N X2 N band matrix with a bandwidth of 5
and

V= [H¢(R1)Hr(R1) T H¢(RN)Hr(RN)] T-

To obtain the cutoff frequency of each guided mode, we
set B%=kle, (B=0) and search the value of normalized
frequency V such that the determinant of A becomes
vanishing. The dispersion curves of guided modes are
constructed by fixing V' (or B) and then searching the
value of B (or V') which renders det A vanishing.

In the cases of m # 0, the computation effort for each
trial set of B and V of the proposed method lies mainly in
the Gauss elimination of the band matrix A, which takes
12N multiplications. The required core memory is about
20N locations of storage. In the case of m =0, H,(R) and
H_(R) are uncoupled in the formulation and the computa-
tion effort can be reduced accordingly.

IV. RESULTS

The proposed method can treat any kind of permittivity
profile. In this investigation, we consider the parabolic
profile (P(R) =1— R?), for which the present results can
be compared with other works. The number of node points
N chosen in this section is 100, except when stated other-
wise. The notation TE (TM) corresponds to the mode of
m=0 and H,(H,)=0. In the cases of m> 0, the modes
are hybrid. The notation HE (EH) corresponds to the
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TABLE I
NORMALIZED CUTOFF FREQUENCIES OF OPTICAL FIBERS
WITH THE PARABOLIC PROFILE

€, = 1.0404 €, = 2.25

Mode 1. 1. 111, . v. VI VIl
HEq, 0.00 0.00 0.00 0.00 0.00 0.00 0.00
™, 3.501  3.502  3.502  3.502 3.230 3.230  3.230
TEg; 3.517  3.518  3.518  3.518 3.518  3.518  3.518
HE, | 3.532  3.532  3.532  3.533 3,870  3.879  3.882
HE, , 5.061  5.070 5.066  5.065 5.005 5.001 5.001
EH, | 5.733  5.732  5.733  5.733 5.570  5.572  5.572
HE,, 5.760 5.760 S5.761  5.761 6.149  6.157  6.160
™, 7.438  7.435  7.440  7.441 7.231  7.238  7.238
TE,, 7.450  7.446  7.451  7.451 7.446  7.451  7.451
HE,, 7.455  7.451  7.456  7.457 7.542  7.552  7.555
EH,, 7.835  7.834  7.835  7.836 7.649  7.652  7.653
HE, 7.865  7.864 7.866  7.866 8.273  8.281  8.283
HE,, 9.144  9.156  9.156  9.156 9.093  9.094 9.094
EH, 9.636 9.619  9.637  9.638 9.500 9.518  9.518
HE,, 9.652  9.644  9.653  9.654 9.855  9.871  9.875
EHy; 9.890 9.889  9.891  9.891 9.641  9.644  9.645
HE 9.923  9.920  9.923  9.923 10.339 10.346 10.348

The data in column I are taken from [1]; those in columns I and V (III
and VI) are made here with N = 30 (100).

HE 2

TEoy

v 35

T™Mo

€

Fig. 1. Cutoff frequencies of three lower modes as functions of «,.

mode for which the maxima of the corresponding £,(R)
and H,(R) are of the same (opposite) sign.

The calculated cutoff frequencies of the first 17 modes of
the parabolic profile are presented in Table I. The data
presented in volumns IV and VII of Table I are believed to
be exact, since no deviations in the third decimal digit were
observed when larger values of N were used. All the data
in column IV (¢,=1.0404) are achieved with N = 300;
most of the data in column VII (e, = 2.25) are achieved
with N =1000. For comparison, we also list the results
from Bianciardi and Rizzoli [1] in column 1. It is seen that
their results show some discrepancies from those in column
IV, especially for the HE|; mode.

The variations of the cutoff frequencies of the TE,,
TM,,, and HE,; modes as the permittivity ratio increases
are shown in Fig. 1. It is seen that as e, approaches unity,
the above three modes become degenerate. As e, increases,
the cutoff frequency of the HE,; modes increases, while
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Fig. 2. Dispersion curves of the first 17 modes of the parabolic profile
with ¢, =1.0404. :

Fig. 3. Dispersion curves of the first 12 modes of the parabolic profile
with ¢, = 2.25.

that of the TM;; mode decreases. As noted in Section II, it
is seen that the cutoff frequency of the TE, mode is
independent of the permittivity ratio. Since the vectorial
solution becomes the scalar one when ¢, approaches unity,
the vectorial and the scalar results of the TE modes become
identical, regardless of the permittivity ratio. Exact solu-
tions of cutoff frequencies of the parabolic profile in the
scalar form can be obtained analytically via the Kummer
functions and have been calculated by Lukowski and
Kapron [14]. From them, the exact values of normalized
cutoff frequencies of the TE, and the TEy, modes are
given as 3.518 and 7.451, respectively, which agree with our
presented data.

Dispersion curves of the first 17 guided modes of the
parabolic profile with e, =1.0404 ‘are shown in Fig. 2.
From Fig. 2, it is seen that due to €’(R) being negligibly
small, the HE,, ., ; mode and the EH,,_, ; mode (or the
TM,, and TE,, modes, when m =1) become nearly degen-
erate. Similar degeneracy also exists in the dispersion curves
of the HE,,, mode and the EH,, ,_, mode in the region of
far above cutoff. (Note that the latter near-degeneracy may
not hold in other profiles, as, shown in Fig. 7.) When the
permittivity ratio is increased, two such kinds of near-
degeneracy are removed somewhat, as indicated in Fig. 3.
To demonstrate the effect of the permittivity ratio on the
propagation characteristics, the shifting of the dispersion
curve of the fundamental (HE,;) mode as e, is varied is
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Fig. 4.

Dispersion curve of the fundamental (HE,;) mode with ¢, as a
parameter.
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Fig. 5. TField distributions of the fundamental (HE;;} mode (in relative
magnitude) with the normalized propagation constant and the permittiv-
ity ratio as parameters. The discrepancies between the curves of H, and
H, are too small to be shown for the cases of ¢, =1.0404.

shown in Fig. 4. It is seen that the curve shifts downwards
when the permittivity ratio is increased.

The corresponding eigenfunctions (field distributions of
guided modes) are illustrated in Figs. 5 and 6. It is seen
that for a higher B, the fields are more concentrated in the
core region and that the discrepancy between H,(R) and
H,(R) becomes stronger as ¢, is increased. It is noted that
the HE,, modes have the largest fields at the core center,
while the EH,;; modes do not. From such field distribu-
tions, the power distributions [2], [5] and group velocities
{15] can be deduced.

In an actual fabrication, there may be a central dip in
the permittivity profile. To investigate the effect of the dip,
we assume the Gaussian dip, namely, P(R)=1-R>—
G, exp[—(R/G,)?*]. The corresponding dispersion curves
are shown in Fig. 7, from which it is seen that the curves
are lower with a larger' G,. It is noted that the dip has
weaker effects on the EH;; modes and those modes with
m #1. This fact is accounted for by noting that the field
distributions of such modes are smaller at the core center
(from Fig. 6 or (5)) where the dip is located. Since the
effects of a central dip are different for the HE,, and the
EH,, modes, it is expected that the near-degeneracy be-
tween such two modes (in the case of G, = 0) is removed at
the presence of a dip, as shown in Fig. 7 and, similarly, in

[6].
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Eigenfunctions

Eigenfunctions

(b)

Fig. 6. Field distributions of the EH;; mode (in relative magnitude)
with the normalized propagation constant as a parameter. (a) €, =1.0404.
(b) €, =2.25. The discrepancy between the curves of H, and H, is too
small to be shown in (a) for B=0.5.
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Fig. 7. Dispersion curves of some lower modes of the parabolic profile

(€, =1.0404) with the Gaussian dip (G,, = 0.2).

V. CONCLUSION

Based on the finite-difference technique, an efficient and
rigorous method has been developed which can treat prop-
agation constants as well as cutoff frequencies of optical
fibers with arbitrary permittivity profiles. The propagation
problem is formulated in transverse fields such that the
proposed method does not suffer from spurious modes.
Associated boundary conditions are derived, including
those at cutoff. Calculated results of the cutoff frequencies
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and the dispersion curves of optical fibers with the para-
bolic profile are presented. The effects of the permittivity
ratio and the Gaussian dip are also discussed.
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